
A Generic Language for Dynamic Adaptation

Assia Hachichi1, Gaël Thomas1, Cyril Martin1, Bertil Folliot1, Simon Patarin2

1 LIP 6 - Université de Paris6
firstname.name@lip6.fr

2 DSI- Università di Bologna
patarin@cs.unibo.it

Abstract. Today, component oriented middlewares are used to design,
develop and deploy distributed applications easily. They ensure the het-
erogeneity, interoperability, and reuse of software modules.
Several standards address this issue: CCM (CORBA Component Model),
EJB (Enterprise Java Beans) and .Net. However they offer a limited and
fixed number of system services, and their deployment and configuration
mechanisms cannot be used by any language nor API dynamically.
As a solution, we present a generic high-level language to adapt system
services dynamically in existing middlewares. This solution is based on a
highly adaptable platform which enforces adaptive behaviours, and offers
a means to specify and adapt system services dynamically. A first proto-
type3 was achieved for the OpenCCM platform4, and good performances
were obtained.

1 Introduction

Computing systems are increasingly complex and difficult to maintain. More-
over, the various elements, that constitute an environment, are often physically
distributed on heterogeneous nodes. Middlewares were introduced to solve these
difficulties, by proposing common generic system mechanisms to the distributed
applications.

The last generation of component oriented middlewares introduces the com-
ponent and container concepts. A container manages system services, such as
persistence, transaction, security or naming, in a way that is transparent for
business code, which is encapsulated in components.

The adaptation of system services is often done statically, by stopping the
middleware execution, which induces a high cost for critical applications. For
this reason the dynamic adaptation is more efficient. Some platforms provide
mechanisms that can be used to adapt services dynamically. Nevertheless, these
mechanisms are specific to the targeted platforms : they are not reusable on
other middleware platforms easily. Moreover, there is no standard nor model
that unifies adaptation mechanisms independently of platforms.

3 This work was partially financed by the European project IST-COACH (2001-
34445).

4 OpenCCM is an implementation of the CORBA Component Model specification [1]



We propose to use a domain-specific language (DSL) [2] technique : a pro-
gramming language providing high-level abstractions related to a given domain.
The expertise captured in the language allows behaviours to be expressed in an
intuitive and high-level manner, permits verification, and allows generation of
efficient code that is automatically integrated in the target platform.

In this context, our work proposes the Container Virtual Machine (CVM)
approach, which defines a generic adaptation language. The CVM includes a
DSL for writing adaptation behaviours. Each adaptation need is described on
CVM language then is translated to different targeted platform language on the
fly, in an automatic way. This approach allows separation between the adaptation
logic and its implementation, by providing a high-level language.

A first translator has been implemented on the OpenCCM platform [3], an
open source implementation of the CORBA Component Model (CCM) specifi-
cation defined by the Object Management Group (OMG). This prototype allows
the adding and reconfiguring of new system services, and offers administrators
the possibility to specify and deploy system properties dynamically even if they
were not taken into consideration initially.

In the following, Section 2 presents other proposals allowing to make middle-
wares flexible. Then, our proposal for offering high level language for dynamic
adaptation is detailed in the Section 3. Section 4 describes the CVM and exam-
ples implementation, and Section 5 presents the conclusion of our work.

2 Related Work

Several component-based models exist such as: Microsoft .Net, Sun Microsystems
Enterprise Java Beans, or OMG CORBA Component Model. These models are
used to design and to deploy distributed applications. However, they do not allow
easy integration and adaptation of system services5 dynamically. Moreover, no
standard envisages describing the integration and adaptation of services after
initial deployment of the application.

The first middlewares were not designed to be flexible. However, adaptation
techniques have been proposed, such as interceptors, and Portable Object Adap-
tor (POA) in CORBA ([4]). The interceptors [3] allow inserting code before the
reception and after sending a request. The POA allows programmers to construct
object implementations that are portable between different ORB products.

Several projects aim at making CORBA more flexible. DynamicTAO [5]
(based on TAO), a reflexive CORBA environment, reifies the internal elements of
the ORB in the form of components called configuration components. Dynamic-
TAO keeps a compatibility with CORBA applications, by offering a high degree
of adaptability. One of the difficulties that this project raises is the problem of
coherence when a policy is replaced by another.

AspectIX [6] adopts a fragmented object model based middleware [7]. The
fragments can mask the replication of a distributed object, impose real-time con-
straints on the communication channel, put the object information in memory

5 system services such as: transaction and replication service



cache, etc. These non-functional (system) aspects can be configured via a generic
interface of the object. Each global object can be configured by a profile that
specifies the aspects that the fragments must respect. Four profiles are planned,
in particular a CORBA profile that allows for these AspectIX objects to inter-
act with CORBA objects. This approach allows a clear separation between the
application and the middleware over which it is deployed.

JAC (Java Component Aspect) allows to weave an aspect dynamically: the
relation between the wrappers and the advice codes can be redefined on the fly.
However, the number of pointcuts is not extensible dynamically: if the class is
already charged in the virtual machine, there is no means to add a new pointcut.

An architecture of open containers is proposed in [8]. This architecture al-
lows dynamic adaptation and extension of the system functions, and it allows
exposing some number of container properties, using control , interception and
coordination mechanisms. OpenORB [9] is a flexible architecture of component
oriented middleware. OpenORB is based on the reflexion. Each Object of the
system is associated to a meta-space which offers structural representation. The
ORB is configured or reconfigured by using the Meta-Object protocol. Java-
POD [10], is a component model which allows attaching system properties to
the components. This attachment is achieved by means of open and extensible
containers. Comet [11] is an events based middleware. It can be adapted by
inserting pre/post hooks into the components. A language is associated to dy-
namic reconfiguration of the Comet middleware. However this language is not
extensible dynamically, and is not generic since it is applicable only for Comet.

These various projects increase the middleware adaptation possibilities by
re-coding it. Our work takes different direction, we propose a generic high-level
language to adapt the system services dynamically in existing middlewares. Each
adaptation behaviour is described on this high level language then is translated
on all targeted platform language, in an automatic way. This abstract description
allows separation between the adaptation logic and its implementation.

3 Container Virtual Machine Approach

Instead of providing adaptation behaviours that depend on the middleware plat-
form, the Container Virtual Machine approach defines a generic language, which
gives a high-level abstraction of system services adaptation behaviours, that is
independent on the middleware platform. The abstraction behaviours are trans-
lated on the targeted platform, in automatic and dynamic way.

This approach allows (i) the unification of adaptation behaviours, indepen-
dently on the targeted platform, (ii) the automatic generation of CVM scripts
can be achieved by a design tool, and (iii) the generation of platform independent
adaptation models (PIM - Platform Independent Model) and them translation
on the trageted platform (PSM - Platform Specific Model).



CVM

loaded

loaded translate

Middleware−dependent
Translator X

Middleware X

CVM Runtime

Reconfiguration
script (DSL)

Fig. 1. CVM Concept (Container Virtual Machine)

Fig. 2. CVM Processing (Container Virtual Machine)

3.1 CVM Design

The CVM approach aims to remain neutral with respect to the platform, and
to separate the adaptation language from its execution. Figure 1 presents the
CVM concept ; its input is a configuration script, called a translator, which
is dependent on middleware. The translator enables to translate an adaptation
script written in CVM language for a specific middleware.

3.2 CVM Implementation

The main idea is to add an entry point to different platform middleware, at
the initial deployment and in a transparent way. This entry point enables the
interaction between the CVM platform and its targeted middleware platform,
and is called a Communication Interface (CI). It enables the translation of ab-
stractions to the targeted middleware language. The CVM is mainly based on a
highly adaptive platform to describe and to enforce the adaptation behaviours.
This platform is generic with respect to middleware platforms, and interacts
with each middleware platform through its associated Communication Inter-
face (fig 2). The CVM allows to define new adaptation operations on the fly.

Virtual Virtual Machine: The CVM design requires a highly adaptable
language to provide separation between the adaptation logic and its implemen-
tation, and to extend the access operations in order to enforce what can be
adapted. The selected highly adaptable platform is the Virtual Virtual Ma-
chine (VVM) [12], which is a dynamic code generator that provides both a
complete, reflexive language, and an execution environment. The VVM allows
to modify the implemented mechanisms, to reconfigure the environment, and to
extend or modify the associated language.

The main objectives of this environment are: (i) to maximize the amount of
reflective accesses and intercessions, at the lowest possible software level, while



preserving simplicity and efficiency; (ii) to use a common language substrate to
support multiple language and programming paradigms.

To achieve this, the VVM provides four basic services: (i) code generation: a
fast, platform- and language-independent dynamic compiler producing efficient
native code that adheres (by default) to the local platform’s C ABI (Applica-
tion Binary Interface) ; (ii) meta-data that are kept between compilations, thus
allowing higher-level software to reason about its implementation or that of the
environment, and modify them dynamically ; (iii) introspection on dynamically-
compiled code, the application and the environment itself ; (iv) input methods,
giving access to the compilation and configuration process at all levels.

The execution model is similar to C and the dynamically-compiled code has
the same performance as a statically compiled and optimized C program. In the
context of the CVM, we added a server which receives Abstract Syntax Tree
from another VVM, compiles and links them, and executes the generated code.

The use of the VVM allows the separation of the adaptation logic from its
implementation. This language must be both extensible to new adaptive needs
dynamically, and generic with respect to the targeted middleware in order to
ensure its reusability. It allows both to reduce the possibilities of reconfiguration
by limiting the language symbols, and/or to extend the language by providing
introspection of the environment and the creation of new symbols.

Remote administration of the CVM: In order to ensure the adaptation
of several network nodes from a remote administration console, we built a remote
adaptation environment in the VVM platform; this environment must be loaded
on all VVMs. It parses/lexes scripts that reconfigure the target environment;
these scripts are transformed into abstract syntax trees. These trees are sent to
the VVM, which is able to receive them on a communication channel (example:
a TCP socket). These trees are then compiled and executed on the second entity.

In the adaptation context, a client opens a communication channel, and
parses/lexes VVM scripts that reconfigure the remote machine (server), then
sends the corresponding trees to the server. When a server receives the abstract
syntax trees, it compiles and executes them.

4 Qualitative evaluation

The CVM is evaluated on a CORBA Component Model implementation written
in Java: the OpenCCM [3]. This section details the prototype implementation.

4.1 OpenCCM Translator Implementation

In the case of the OpenCCM platform, the translator is achieved by using a Java
native method, which launches the VVM. The communication Interface (CI) be-
tween the VVM and the standard JVM is provided by JNI (Java Native Inter-
face [13]). JNI is an interface between the native functions and the Java virtual
machine.



The VVM is executed by a Java thread in competition with those of the
application. The language of the VVM is then dynamically extended: the scripts
written for the VVM can then interact with the JVM directly, and the VVM is
able to handle the methods and the symbols of the Java application (Fig 2).

A reconfiguration comprises two important steps:

1. The first phase consists in building methods that allow dynamic adaptation
into the VVM; for example: methods that integrate or remove components.

2. The second consists in writing a CVM script that contains the adaptation
needs. This script is loaded remotely by the administration console and is ex-
ecuted by using a CI. Scripts can either extend the reconfiguration language,
or use the keywords already built in to modify the OpenCCM application.

To illustrate the use of the CVM, two examples of reconfigurations are pre-
sented in the rest of this section.

4.2 Integration of service

We classify the system services in two classes: not-intrusive services, which do
not modify the treated data, and the intrusive services, which modify the data,
and requires synchronization

In this paper we present two examples for integrating services, one is a mon-
itoring service that is not-intrusive and the other one is an encryption service
that is intrusive. These integrations are based on the Portable Interceptors and
on System Oriented Component respectively.

Flexible Monitoring Service: The first example illustrates the dynamic
integration of a flexible monitoring service based on interceptors.

This service was designed to collect statistics on the way components interact
with each other, and to make this information available to a “reconfiguration
service” that will use it to adapt the platform.

The monitoring service is composed of two concurrent processes. The first
one collects all available information concerning the called requests, and records
them in a log file. The second process scans the log generated by the first process
periodically, and calculates the statistics of the call number and the average
response time for given operations. The integration of this service is based on
CORBA portable interceptors.

The CORBA specification [14] defines the portable interceptor interface as
a way to insert hooks directly inside the ORB. These hooks are activated for
every operation performed by the broker: mainly method invocations and result
returning. Hooks may be located either on the client or on the server side. We
conclude that the integration of the monitoring service on the level of interceptor
hooks, allows to invoke the monitoring service code at every request by extract-
ing several metrics, such as the number of times a specific method is invoked, and
sums all the invocations of methods belonging to the same component. However,
no standard language or interface enable to use Portable Interceptors dynami-
cally to achieve an integration of System Services. For this reason the CVM is



used to integrate the monitoring service dynamically. This integration comprises
two phases: (i) to specify, in the VVM platform, the new adaptation operations
that allow adding code in the OpenCCM interceptor hooks dynamically. (ii) to
write and to execute a VVM script that integrates service code in hooks through
the Communication Interface.

Encryption Service: Considering an application, that contains two com-
ponents “A” and “B”, included in containers “CA” and “CB” respectively (see
figure 4). Component “A” sends messages to “B” in a regularly way. During
the execution, the administrator decides to send encrypted messages to “B”. In
order to achieve this, we use another mechanism to intercept requests: System
Oriented Components (SOC). This mechanism is used because it is generic ; it
can be applied for any middleware, and shows that it is possible to define other
integration mechanisms on the fly.

The System Oriented Component mechanism consists in adding CCM com-
ponents which containing the service code to be added, and in establishing the
necessary connections with the components to which this service will apply.

In our example, the integration of an encryption service consists in inte-
grating an encryption SOC component in container “CA”, and a decryption
SOC component in container “CB”. Basically the integration consists in adding
the necessary operations to the VVM, such as the operations which enable SOC
component creation and handling the connections between any components. The
second step is to write and execute the VVM script which allows us to: (i) add
the encryption SOC in “CA” and another one in container “CB”, (ii) disconnect
“A” and “B” ; (iii) establish the connections between “A”, “B” and their respec-
tive SOC (see figure 4 and 3), by ensuring the synchronization. Problems that
can occur are : encoded messages may be received before adding a decryption
SOC, or non-encrypted messages will be sent after adding the decryption SOC.

To avoid these problems, the synchronization must be ensured dynamically.
A pseudo-algorithm that is proposed consists in deactivating “A” before “B”,
breaking the connections between “A” and “B”, and then adding the encryption
and decryption SOC in container “CA” and “CB” respectively, finally establish-
ing the necessary connections, and activating “B” before “A”.

In the case where the targeted middleware does not provide the possibility to
activate or deactivate a component, we propose to use a queue. Messages from
“A” will be redirected towards the queue, during integration of encryption and
decryption service. Synchronization is not yet implemented in our encryption
prototype.

4.3 Adaptation of the encryption service

To illustrate the adaptation of existing services, we adapt the encryption service
of the previous example, during the execution.

Component behaviour adaptation can be achieved by replacing a component
by a new one. However, it is simpler and less expensive to adapt a component
by replacing some of its methods.



1. (On container CA
– (Deactivate Component A))

2. (On container CB
– (Deactivate Component B))

3. (On container CA
– (Disconnect components A B)
– (Insert SOC SocA)
– (Connect components A SocA))

4. (On container CB (Insert SOC SocB)
– (Connect components SocA SocB)
– (Connect components SocB B))

5. (On container CA
– (Activate Component A))

6. (On container CB
– (Activate Component B))

1. <programme>→<reconfiguration>*

2. <reconfiguration>→<SOC>*| <PI>*

3. <SOC>→ (On container<atomeCont>
<action>*)

4. <action>→ (<subaction><atome>)

5. <subaction>→Deactivate Component|
Disconnect components <atome> |
Insert SOC | Connect components<atome>
|Activate Component

6. <atomeCont>→ Containerreference.

7. <atome>→ Compoenentreference

8.

Fig. 3. (A) An example of the reconfiguration script that integrates encryption SOC
(B) A part of the CVM grammaire

Fig. 4. Integration of the encryption service

In the case of the encryption SOC adaptation, it is enough to adapt the Java
method that contains the encryption service. The Java standard allows dynamic
loading of a class and overload of the serialization methods. By coupling the Sun
Java platform and CVM, we can adapt a Java method. Let us take the example of
method “metA” from class “A”, the adaptation of this class is done by charging
a new class “A1” which inherits from “A”, and which implements the new code
of “metA”, then redirecting all calls towards the new loaded method (Fig 5).

4.4 Discussion

Two adaptation examples were presented ; one is based on the SOC approach
which is generic in the sense that it can be applied for any component-oriented
middleware. However, the created SOC must have compatible ports with existing
components, and the SOC code is compared to service code that it contains.



Fig. 5. Method adaptation

The second example is based on the Portable Interceptors (PI) approach,
and is not generic, since the PI concept does not exist in all component-oriented
middlewares, with EJB. But this code size is smaller than the SOC code size.

A Set of ten performance evaluation measures of the dynamic integration
were performed, on a Pentium III 664MHz under Linux. These measures repre-
sent the duration between the old configuration and the new configuration after
the end of service integration. (i) The monitoring service integration average
duration, which is based on the portable interceptors, is 8.539 seconds. (ii) The
encryption SOC integration average duration is 2.054 seconds.

Another set of ten SOC adaptation duration measures were done. This du-
ration represents the time between the initial configuration and the end of the
encryption code replacement. The average of the ten measures is 94 ∗ 10−3 sec-
onds.

We note that the integration based on Portable Interceptors is slower than
service based on System Oriented Components. This can be explained by the
cost resulting from the flowing of all requests through the interceptor layer. In
[15], which studies three different ORB implementations, it is shown that the
activation of portable interceptors increases latency by a factor varying between
2% and 10% and decreases request throughput by a factor ranging from 1.5% to
16%, This cost is then limited.

We note that the adaptation duration average is slower than integration
service duration. However, these costs remain limited.

5 Conclusion

This paper presents the Container Virtual Machine, a platform which allows
dynamic adaptation of system services and provides a generic language specific
to adaptation domain (DSL) . This language offers a high-level abstraction of
adaptation behaviour and is itself extensible. Adaptation CVM scripts can be
translated for different target platforms during the execution automatically.

The CVM approach provides a separation between the adaptation logic and
its implementation. CVM language is generic in the sense that it is independent
from the middleware to be adapted. It language enables to describe any new
adaptation and the related operations. It allows an adaptation remote admin-
istration which provides interoperability and synchronisation between several



nodes; it can be aperated on different middleware platforms, such as EJB and
CCM. The provided high-level abstractions are translated automatically for the
targeted platform.

As future works, we aim to reuse the CVM language on the different plat-
forms, such as EJB, then to refine the grammar of our DSL. To provide means
that ensure the coherence, atomicity, and verification of the dynamic adaptations
and of there deployment. To achieve the automatic generation of CVM scripts
design tool such as Rationalrose, then to offer mechanisms that execute models
automatically.

References

1. : Openccm user’s guide (2004) http://openccm.objectweb.org/doc/0.8.1/user guide.html.
2. Lawall, J., Muller, G., L.P.Barreto: Caputing os expertise in an event type system:

the bossa experience. In: Tenth ACM SIGOPS European Workshop (EW 2002),
France, Springer-Verlag (2002) 154–61

3. OMG: Interceptors Published Draft with Corba 2.4+ Core Chapters. (2001) Doc-
ument Number ptc/2001-03-04.

4. Daniel, J.: Au coeur de Corba. (2001)
5. Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhães, L.C., Campbell,

R.H.: Monitoring, Security, and Dynamic Configuration with the dynamicTAO Re-
flective ORB. In: Proceedings of the IFIP/ACM International Conference on Dis-
tributed Systems Platforms and Open Distributed Processing (Middleware’2000).
Number 1795 in LNCS, New York, Springer-Verlag (2000) 121–143

6. Hauck, F.J., Becker, U., Geier, M., Meier, E., Rastofer, U., Steckermeier, M.: As-
pectIX: An aspect-oriented and CORBA-compliant ORB architecture. Technical
Report TR-I4-98-08, Univ. of Erlangen-Nuernberg, IMMD IV (1998)

7. Makpangou, M., Gourhant, Y., Narzul, J.P.L., Shapiro, M. In: Fragmented objects
for distributed abstractions. IEEE Computer Society Press (1994) 170–186

8. Vadet, M., Merle, P.: Les conteneurs ouverts dans les plates-formes à composants.
Journes composants : flexibilité du système au langage (2001)

9. Blair, G.S., Costa, F.M., Coulson, G., Duran, H.A., Parlavantzas, N., Delpiano, F.,
Dumant, B., Horn, F., Stefani, J.B.: The Design of a Resource-Aware Reflective
Middleware Architecture. In: Proceedings of the Second International Conference
on Meta-Level Architectures and Reflection, France, Springer-Verlag (1999) 115–
134

10. Bruneton, E., Riveill, M.: Javapod : une plate-forme à composants adaptables et
extensibles. Rapport technique 3850, Inria Rhone-Alpes (2000)

11. Peschanski, F., Briot, J.P., Yonezawa, A.: Fine-grained dynamic adaptation of
distributed components. Middleware 2003 (2003) 132–142

12. Ogel, F., Thomas, G., Piumarta, I., Galland, A., Folliot, B., Baillarguet, C. In: To-
wards Active Applications: the Virtual Virtual Machine Approach. A92 Publishing
House, POLIROM Press (2003) 28–47

13. Liang, S.: The JavaTM Native Interface: Programmer’s Guide and Specification.
Addison Wesley Longman (1999)

14. OMG: Corba / iiop specification 3.0. formal/024206 (2002)
15. Marchetti, C., Verde, L., Baldoni, R.: Corba request portable interceptors: a perfor-

mance analysis. In: Proceedings of the 3rd International Symposium on Distributed
Objects and Applications, Rome, Italy (2001)


