
Platform for Software Recon�guration in

Embedded Systems

Arthur L�eger1, Bertil Folliot1, Damien Cailliau2

email: Arthur.Leger@lip6.fr, Bertil.Folliot@lip6.fr, Damien.Cailliau@obspm.fr

1 Laboratoire d'Informatique de Paris 6 / CNRS
Universit�e Pierre et Marie Curie

2 D�epartement d'�etudes spatiales / CNRS
Observatoire de Meudon

position paper

Abstract

The software on quite all embedded systems (from smart cards to satellites) is diÆcult to change
once it has left the factory. It is then diÆcult to modify their functionalities, to add new ones or
to correct hardware or software bugs. Moreover, the constraints speci�c to the embedded system
(on memory, CPU, power, communications and so on) make recon�guration even more diÆcult.
We propose in this paper a software recon�guration platform, which is general enough to take into
account a wide variety of constraints, and which is exible and adaptable enough to be speci�c to a
given embedded application.

I. Introduction

T
HE software on quite all embedded systems (ranging from smart cards and PDAs to satellites) is

diÆcult to change once it has left the factory. It is then diÆcult to modify their functionalities

or to add new ones (as could be needed in set-top-boxes) or to load new software to correct software

or hardware faults (for instance when a radiation burst damages one of the sensors of a satellite).

What is usually done is modifying the software o�-line, then stopping the application, overwriting

the entire code segment (or just di�s) in the memory of the system and re-starting it. This is known

as the \patch" technique. It strongly limits the possibility of recon�guration and the safety of such

recon�gurations (for instance, there is no way to prevent the embedded system from drifting in an

irreversible manner from its nominal behaviour), and it is mostly used in emergency situations to

react to unpredicted behaviour. This may be acceptable for a smart card but could have dramatic

consequences both from a scienti�c and economical point of view for a satellite or it could even be

worse in human life critical applications.

We believe that there exists a whole family of solutions which must be derived for each application

domain (smart cards, satellites, human critical systems...) or even to each particular system depending

on its seriousness.

We propose in this paper a methodology for building recon�gurable software for embedded systems

that �ts to the application domain. This methodology relies on 3 principles:

� software encapsulation and decomposition by the means of proxies;

� a language (that may be dedicated to the particular domain) to express an initial con�guration,

a recon�guration and the constraints which must be respected during the recon�guration phase

(eg. memory footprint, time, communication bandwidth or power consumption);

� and a recon�guration execution engine (which executes on the running application a recon�gu-

ration expressed within this language).

Encapsulation and decomposition allows recon�guration to integrate into existing business software

tools and specialists know-how, and also permits recon�gurations to be safer.

The recon�guration language provides a high level of abstraction to the architects in charge of

recon�guring the software by mapping the design-time structure of the application onto the running

software. A veri�cation tool can then interpret this language in order to verify formal properties



automatically and to test several recon�gurations by simulation before choosing an appropriate one

to commit.

The recon�guration execution engine executes a recon�guration script onto the running application

onboard the embedded system. This task is often too complex and resource consuming for the embed-

ded system itself. Thus, the recon�guration execution engine is \distributed" between the ground base

and the embedded system: the ground-based part compiles the high-level recon�guration script into

a low-level bytecode. This reduces both bandwidth consumption and the complexity of the embedded

part.

This paper presents a methodology for software recon�guration in embedded systems. It tries to

generalize the concepts introduced in the PLERS prototype [FOL00][CAI01a][CAI01b] which was

designed based on the contraints of the French satellite Corot [AUV99]. It is organized as follows:

Section 2 describes the various constraints and diÆculties in recon�guring constrained embedded soft-

ware, Section 3 gives an overall description of our recon�guration methodology, Section 4 describes the

recon�guration language and the recon�guration execution engine, Section 5 compares our approach

with existing works. Section 6 presents conclusions and perspectives.

II. Constrained Embedded Software and Reconfiguration

In order to make recon�guration of embedded software possible, not only must we face the inherent

problems of software recon�guration, but we must also deal with the constraints of the embedded

world. These constraints can be roughly classi�ed into four categories:

� scarcity of onboard resources,

� weakness of the communication link,

� real-time and other domain-speci�c constraints, and

� work habits and methods of the application domain specialists.

For economical (or technical) reasons, embedded systems are very poor in resources. For small

systems which are produced in great quantities, the slightest reduction in the production cost of each

unit becomes huge when millions of items are to be produced. For expensive systems such as satellites,

where very few units are produced, one could think that increasing onboard resources is not an issue.

However, the hardware for space missions must be speci�cally treated to support radiations and this

is a very long and expensive process.

The main three resources which embedded systems are usually scarce on are: memory, CPU and

power consumption. Scarcity of power is may be the most speci�c constraint of embeded systems.

It expresses at several levels. First, the average power consumption is limited. For instance, on

a spacecraft, electric power consumption cannot exceed what can be produced by the solar panels.

Moreover, instantaneous power consumption is also limited. This means that onboard devices cannot

all be active at the same time: to turn one of them on, it may be necessary to turn another one o�.

To end with, some sources of energy cannot be renewed during the whole mission. For instance, this

is the case of fuel for a deep space probe.

These constraints possibly modify the recon�guration itself. The scarcity of memory a�ects recon-

�guration at three levels: the amount of onboard code necessary to execute the recon�guration orders,

the overhead induced on the application code by its capacity of being recon�gured and the size of a

typical set of recon�guration orders. The scarcity of CPU a�ects the code to execute the recon�gura-

tion and the overhead induced on the application code. And the scarcity of power a�ects the way a

given recon�guration may be executed in the same manner as it already does for the application code.

The communication link between the ground base and the embedded system su�ers some several

weaknesses. These are the same ones as in the world of \usual" distributed systems: low bandwidth,

long and variable delays, discontinuous connection and possible unreliability of transmission. But

they can be way more serious. For instance, in the case of a deep space mission, delays can grow up

to several hours (at light-speed, as for DeepSpaceOne) or total available bandwidth may be limited

to 200Kb a day (because of intermittent visibility, as for Corot). At the opposite, a smart card can

be deconnected for an arbitrary long period of time. Thus, the execution of a recon�guration cannot

always be driven with human-in-the-loop interactivity and the size of a typical set of recon�guration

commands should be compatible with the available bandwidth in order to be sent in little time (and

if possible in one connection).



Depending on the application domain of each particular system, some other constraints can appear.

Real-time is one of them: some systems must perform some operations before certain deadlines or at

very precise dates even while other tasks of the same system are being recon�gured. For instance,

recon�guring an algorithm should preferably not disturb the task of keeping track of the embedded

system's course (attitude recovery takes several days for Corot).

For each speci�c application domain of embedded systems, software architects have developped over

the years knowledge, methods, tools and code. Recon�guration cannot sensibly make them unusable

and should integrate coherently within them.

III. Reconfiguration Process Overview

As stated above, our methodology relies on three main principles: software decomposition by the

means of proxies, a high level language for expressing recon�gurations and their constraints and a

recon�guration execution engine.

01101
10100
00101

Operating
system

Operating
system

Reconfiguration
execution

engine
(embedded part)

Reconfiguration
execution

engine
(embedded part)

Formal validations
Simulations
Tests
Statistics

Execution of
reconfiguration
script

Reconfiguration execution
engine

Specifications

Modified specifications

Design tools

Initial architecture

Modified architecture

Configuration script
+ initial constraints

Initial script

Reconfiguration script
+ new constraints

Bytecode
(base part)

Verifications

Running application

Running application

(before reconfiguration)

(after reconfiguration)

Transmission

Embedded systemMaintenance facilities

Fig. 1. Recon�guration process overview. To recon�gure the system, the new architecture is de�ned
within the same design tools as usual. The corresponding recon�guration script must then be written. This
script is executed by the maintenance-facilities part of the recon�guration execution engine. When the veri�ca-
tions produced are satisfactory, the bytecode may be transmitted to the embedded part of the recon�guration
execution engine.

The general process of recon�guring the application onboard an embedded system results from the

necessity of changing the application's behaviour and consists in several steps:

1) informal description of the needed behaviour,

2) modi�cation of the high-level description of the application in the design-time formalism (eg.

UML),

3) determination of a set of low-level recon�guration orders to apply on the running code,

4) testing of these orders,

5) transmission to the system,

6) execution of these orders on the embedded system, and



7) transmission of a diagnostic.

The aim of our solution is to keep the design-time structure of the application in the running code.

The code is not monolithic any more, but is composed of smaller pieces - each one corresponding

to one item of the high-level description - which are bound together by the means of proxies. Our

prototype language (see sec. IV) expresses a recon�guration as a set of bind modi�cations and items

loading/un-loading. The recon�guration execution engine executes these orders directly on the proxies

and on the pieces of code.

The strength of our approach resides in making the recon�guration expressed at the same level of

abstraction as the design-time description of the application. Thus:

� there is only one formalism to manipulate,

� the time-consuming and error-prone step of hand-writing a sequence of low-level recon�guration

operations is eliminated,

� some properties' formal veri�cations are possible,

� extensive testing is possible (since scripts are easy to write), and

� diagnostic is smaller while more expressive (structured description of the items and of the binds

instead of a whole dump of the binary code...).

IV. Reconfiguration Language & Reconfiguration Execution Engine

Some practical problems bring complexity to the general process presented in the previous section.

First, the design-time formalism varies with the application domain of the embedded system and

with the company's culture. Since the recon�guration language manipulates the same concepts and

interacts with this design-time architecture description language, it depends on it. Two main options

may be considered: either the recon�guration language is derived into a new avor adapted for each

context, or the recon�guration language is generic enough in order to be independent from the context.

This point still is under investigation.

Moreover, a recon�guration is an intrusive process which doesn't necessarily respect the application's

normal stream of computing, since it is precisely intended at changing the behaviour of the application,

and hence will break the continuity of treatment. Thus, any recon�guration cannot be done anyhow

at anytime: some constraints must be respected regarding the time and way a recon�guration occurs.

These constraints highly depend on the functional semantics of the application and even on its precise

architecture. These constraints cannot be de�ned but by the specialists in charge of maintaining the

application and will be expressed within the recon�guration language.

Last, the size of a typical text-encoded recon�guration script and, above all, the complexity of the

task of interpreting such a script and of checking whether the speci�ed constraints are respected can

often not be done on board. Thus, the recon�guration execution engine should be distributed between

the maintenance facilities and the embedded system itself. In other words, the computation-intensive

generation of a sequence of low-level recon�guration orders implementing the speci�ed recon�guration

and verifying all the constraints in the high-level recon�guration script is done on the ground. The

generated procedural sequence is then bytecoded for transmission to the embedded system. The work

of the onboard part of the recon�guration execution engine is then reduced to the straightforward

execution of this low-level bytecode. This drastically downsizes the code which must be embedded

onboard the system in order to handle the recon�guration phase.

The semantics of the recon�guration language is threefold.

i) First, it is used to describe each component of the application. This description includes all

the properties which are necessary and suÆcient in order to manipulate this component. For

instance, the description of an end computation component like a procedure includes the size

of the compiled code (necessary for memory management of the component), the prototype

for calling it and maybe the worst-case execution time if there are real-time concerns for this

application.

ii) Obviously, the recon�guration language also enables description of the architecture of the appli-

cation: the items used in the con�guration (references to their above-mentioned descriptions),

their state in this con�guration (for instance, the base address at which the code of a procedure

is loaded) and the binds between these items. To be more precise, what is described is rather



the loading/deletion of items, the modi�cation of their state (as the modi�cation of the priority

of a task is a kind of recon�guration) and their linking and un-linking1.

iii) Finally, this language is used to describe the constraints which a�ect the recon�guration of the

system. For instance, a constraint can be the global duration of the recon�guration phase or the

maximum memory overhead. Or a constraint could even be the fact that the recon�guration of

a particular procedure must occur between the treatment of data packets of two precise types

in order to enforce consistency.

We consider that this language must be as exible as possible regarding the spreading of a recon�g-

uration description over several �les. Thus, the description of a recon�guration is itself decomposed

into smaller pieces and can respect existing rules of project management. For instance, the description

of a reusable component is very likely to be found in a dedicated �le together with other formal spec-

i�cations of its behaviour, its source code or its compiled form. In the same manner, the constraints

which must be respected by the recon�guration could be gathered in a separate �le for direct use by

a formal checker. Besides, for an application containing a great number of components or constraints,

it would violate every conception methodology to put everything in the same huge monolithic �le.

The reason why the constraints expressed within the recon�guration language are so low-level

comes from the genericity of this language. What must be kept in mind is that our methodology

is not dedicated to any particular application domain. At the opposite, the high-level constraints

on the application behaviour and the low-level constraints they induce on the software components

come directly from the application domain and the precise system. For instance, the same high-level

constraint \temperature must remain low" could be derived into \only one actuator can be active at

the same time" for a system and into \recon�guration must be accomplished through small periods

of activity separated by long periods of inactivity" for another one. Thus, this translation cannot

be done automatically and we think that describing it in the recon�guration language would make it

uselessly more complex.

V. Related Work

The need for some kinds of software recon�guration in constrained embedded systems is not new.

Some solutions have already been proposed and even applied.

The Chimera / Onika solution [STE92] supports dynamic recon�guration of component-based appli-

cations. Nevertheless, it is rather con�ned to the speci�c domain of recon�gurable-hardware robotics

and all possible recon�gurations must be planned at design-time and statically de�ned on the system.

The Software Maintenance Facility developped for the Beppo Sax mission [MAR97] provides an

update environment including test and simulation tools of the onboard software. A recon�guration

needs the system to be stoped and is human-in-the-loop oriented.

The onboard fail-safe software of the Cassini mission [BRO96] shows a somewhat novative approach

for spacecrafts. This backup software is reduced to a \boot-loader" which re-initializes the system with

an image of the software from persistent storage which can be patched or reloaded from the ground

as well as the \normal" software. Even though this whole technique was de�ned at design-time and

deeply rationalizes the update process, it still shows some weaknesses. Updates are limited to binary

patches and it is fundamentally stop-patch-restart oriented.

The work done on Remote Agent [MUS98] is probably the most ambitious change in the spacecraft

domain. It was aimed at building an autonomous system which could be adapted to modi�cations of

the mission or to hardware faults. The entire software is goal-based and is issued from AI techniques.

A recon�guration of the behaviour is thus obtained through the sending of a new set of goals to

pursue. The main drawback is the resource consumption which is incompatible with most embedded

systems. Furthermore, there is no real modi�cation of the software and especially the goal-evaluation

model cannot be changed.

Outside the range of embedded systems, several works have been achieved in the domain of dis-

tributed software recon�guration over workstations networks.

1The possibility of using the same language for expressing a static con�guration relies on an abstraction: a con-
�guration is considered as a re-con�guration from the empty con�guration. The empty con�guration is the unique
con�guration which is reduced to the bare system without any recon�gurable component: only the part which must not
be recon�gured and could even reside in ROM.



Olan [BAL98] is an interesting solution since it permits to combine heterogeneous pieces of software

into a uniform component-based model architecture. The strengths are to provide a middleware for

managing di�erent kinds of communication semantics and a Con�guration Machine which deploys the

application onto the network according to high-level deployment constraints. Though Olan doesn't

handle recon�guration of an already deployed application.

Conic [MAG89] handles dynamic recon�guration of component-based applications. Moreover, re-

con�gurations are expressed in a declarative language, relying on a recon�guration daemon for deter-

mination and execution of a consistent sequence of low-level recon�gurations. However, the complexity

of this daemon and the code overhead induced on each agent of the application do not seem to be

applicable onboard the embedded systems considered in this paper.

VI. Conclusions and Perspectives

Many embedded systems share the need for modi�cation of behaviour without being called back

to factory (or even without physical intervention), often for changing functionalities not known in

advance, and sometimes after several years of service. But each one of these applications needs its

own method of recon�guration which would �t its particular constraints.

In this paper, we propose both a methodology for developping recon�gurable software and the gen-

eral maintenance chain ranging from the language for specifying the recon�guration to occur down

to the software embedded onboard the system dedicated to the execution of this recon�guration.

The strength of our approach resides in our constant concern of integration within the existing de-

sign/development/test tools and specialists know-how.

This work generalizes the experience on the PLERS project and bene�ts from its �rst experiments.

PLERS originated as part of a European satellite mission pre-studies for which software recon�guration

services are a necessity because its embedded data extraction algorithms rely on theoretical hypothesis.

A full chain including language, compiler, simulator and interpertor are being developped for Corot

and show the interest of our approach in this case.

The main e�orts are currently directed towards one goal: real-case studies. This involves dynamic

recon�guration experiments onto di�erent real applications conforming to the exact constraints to

which these applications are supposed to abide, using dedicated avors of our tools and language.

The next step will then be to gather and classify the constraints for di�erent domains and design

formalisms, and try to extract a common core and a way to derive the language and tools for each

case.

References

[FOL00] B. Folliot, D. Cailliau, I. Piumarta, R. Bellenger - \PLERS: Plateforme Logicielle Recon�gurable pour Satel-
lites" In Proc. 12th RENPAR, Besan�con, France, June 19-22 2000, pp 191-196

[CAI01a] D. Cailliau, A. L�eger, O. Marin, B. Folliot - \A Joint Middleware/Con�guration Language Approach for
Space Embedded Software Update" To appear in DASIA'2001, Nice, France, May 28 - June 1 2001

[CAI01b] D. Cailliau, A. L�eger, O. Marin, B. Folliot - \Conception d'un Syst�eme de recon�guration de logiciels mul-
titâches embarqu�es sur satellites" To appear in CFSE'2, Paris, France, Apr 24-26

[AUV99] M. Auvergne, A. Baglin, et al. - \Du coeur des �etoiles aux plan�etes habitables, les enjeux de Corot" In Journal

des Astronomes Fran�cais, No. 60, pp 27-34, 1999
[OLI99] J. P. Olive - \Soho Recovery" In Proc Flight Mechanics Conference, 1999
[BRO96] G. M. Brown, J. C. Hackney, Dr. R. D. Rasmussen, K. Zarnegar - \Storing and Loading the Flight Software

for Cassini's Attitude and Articulation Control Subsystem: A Fault Tolerant Approach" In Proc 15th AIAA/IEEE

Digital Avionics Systems Conference, October 1996
[MAR97] A. Martinelli, F. Torchia - \The Software Maintenance in the BeppoSax Scienti�c Mission", In Proc. DA-

SIA'1997, Sevilla, Spain, pp 369-374, May 26-29 1997
[MUS98] N. Muscettola et al. - \Remote Agent: to Boldly Go Where No AI System has Gone Before" In AI, Vol. 103,

No. 1-2, pp 5-48, 1998
[STE92] D. B. Stewart, R. A. Volpe, P. K. Khosla - \Integration of Real-Time Software Modules for Recon�gurable

Sensor-Based Control Systems" In Proc IEEE/RSI (IROS'92), Raleigh, NC, July 7-10, 1992, pp 325-332
[BAL98] R. Balter, L. Bellissard, F. Boyer, M. Riveill, J. Y. Vion-Dury - \Architecturing and Con�guring Distributed

Appplications with Olan" In Proc IFIP, DSP & ODP (Middleware'98), The Lake District, UK, Sept 1998
[MAG89] J. Magee, J. Kramer, M. Sloman - \Constructing Distributed Systems in Conic" In IEEE Trans. on Software

Engineering, Vol. 15, No. 6, pp 663-675, June 1989


